Teachable Mo[bil]ment: Capitalizing on Teachable Moments with Mobile Technology in Zoos

Priscilla F. Jimenez Pazmino
Computer Science
pjimenes@uic.edu

Brenda Lopez Silva
Computer Science
brendita@uic.edu

Brian Slattery
Learning Sciences
bslatt2@uic.edu

Leilah Lyons
Computer Science, Learning Sciences
lyons@uic.edu

MOTIVATION
Support docents in their orchestration and interpretation of dynamic interactive exhibits.

DESIGN APPROACH
We identified two factors as needing further investigation:

- Group debrief meetings and meetings with zoo’s personnel
- Individual docent interviews
- Research fields notes

Data sources:
- Most of the time they worked in pairs.
- 15 docents (12 high school students, 3 college students)

Participants:
- 3 sessions - (38 trials, 12 trials, 3 trials respectively).
- a baseline session (45 trials)
- 4 sessions

Notification Timing
For delivering cues to docs (pop-ups)
- Just-in-time approach
 - System pushes notifications
- Orchestration approach
 - System requires user’s action to acknowledge readiness for new notifications

Presentation Technology
Means this delivery is managed.
- Tablets which afford one-on-one discussions or large projection screens which allow the docent to display information to visitors

RESULTS
Important features to keep in mind while designing to support docs:
- Mirroring content of tablets on additional displays helps to engage a large audience.
- Provide orchestration along with mobility to do not constrain the docent to a particular physical space.
- Support interpretation along with mobility to seamlessly shift between spectators and the main user.
- Adaptable delivery pace of notifications are needed.
- Show concise content and attractive pictures to serve docs and visitors.
- Avoid showing videos when orchestrating or interpreting a dynamic interactive exhibit.

Figure: “A Mile in my Paws” is played by a visitor who interacts with the game with swimming and walking motion. Docents (in green shirts) provide explanation and ongoing explanations.

RESULTS

<table>
<thead>
<tr>
<th>Notification presentation technologies</th>
<th>Advantages and disadvantages of docent-center analysis, as compared to the previous configuration</th>
</tr>
</thead>
</table>
| 1. No notifications * Monitor (print-outs and web-based) | - Docents had to remember the content; so they delivered only half (51%) of it
- Docents mainly conveyed the information to the player, not the audience
- Docents were constrained to a physical space since they had to be close to the secondary display |
| 2. Orchestration * Tablet | - Automatic notifications helped docs deliver about 73% of the content, but they still skipped some of it
- Docs mainly liked to have control of the exhibit in their hands
- Docs could move around using the tablet
- Docs conveyed the message to the audience |
| 3. Just-in-time * Tablet | - Automatic just-in-time notifications support docs' interpretation
- 100% of information was delivered by the technology
- Docs felt interrupted by the technology a few occasions |
| 4.5. Orchestration / Just-in-time * Large display | - A larger audience was addressed
- Docs lost mobility and in some extent the feeling of controlling the exhibit |
| 6. Orchestration * Large display * Tablet | - Docs could engage with a larger audience with the support by two presentation technologies
- Mobility and control was recovered |

Table. Tested configurations. △ Advantages. ▴ Disadvantages

CONCLUSIONS AND FUTURE WORK
Implementation of Hybrid presentation approach – tablets synchronized with a large display.

- Docs preferred personal control (offered by orchestration approach). Just-in-time notifications were also useful to augment ongoing explanations.
- Further research: Incorporation of docent voice recognition to detect long pauses, keywords, or a falling voice pitch; and touch-screen gestures where docs can switch between notification modes without looking at the screen.

Acknowledgements
We thank all Brookfield Zoo’s personnel and docs that were involved in the pilot sessions of “A Mile in My Paws” exhibit. This work was supported by NSF CCEP-I Grant 1043284.